Biofueling the future

By Wilma Pretorius, Ph.D.

[Feb 11 2008]

Whatever their motivation - be it energy independence for the U.S. or an attempt at fighting climate change for Europe - world governments are now heavily subsidizing biofuels. U.S. President George Bush pledged up to $150 million for work on cellulosic ethanol in his 2006 State of the Union address, and as recently as March 2007 he visited Columbia to convince the Brazilian and Columbian governments to become the "green fuel" centres of the world(1).

Biofuels, or fuels derived from living matter, however, are nothing new. Rudolph Diesel unveiled the first generation biodiesel-fueled engine which ran on peanut oil in 1898 at the World Exhibition in Paris, and Henry Ford intended his 1908 Model T to run on ethanol. Intriguingly, the major feedstock for the production of ethanol up to the 1930s was hemp, grown in the U.S. by political icons such as George Washington and Thomas Jefferson. Indeed, the first ethanol plant - a Ford-Standard Oil partnership - successfully operated in the Midwest until the 1930s, but tellingly, it collapsed because of the competition faced from lower-priced low grade petroleum-based fuels and negative marketing campaigns against hemp, led by paper and oil barons of the day (particularly, by William Randolph Hearst and by Lammont Du Pont)(2).

At the time, hemp, poised to supply everything from paper to renewable fuel, directly threatened the timber and petrochemical industries that Hearst and Du Pont were so heavily invested in. In their aggressive smear campaign they even managed to rename hemp marijuana - a term suggested to having come from the Spanish word mallihuan or prisoner - and Hearst-controlled newspapers published countless denigrating stories linking Mexican immigrants to crime and marijuana use. Eventually, and with the help of Hearst and Du Pont lobbyists, the Marijuana Tax Act of 1937, signed by President Roosevelt, effectively stopped any further investment in hemp and renewable paper, textile and fuel deriving from it. Ironically, and after a long delay, we seem to be returning to our original intention of using biofuels as the energy resource as the environmental toll exacted by the fossil fuel agenda leads to a renewed investment and R&D in biofuels.

How do these so-called new generation biofuels differ from the those envisioned by Diesel and Ford, and are they key to solving our current climate issues? Let's take a look.

First generation biofuels

First generation biofuels developed of Diesel and Ford rely on easily extractable sugars and oils from primary crops such as corn, sugarcane and palm or hemp. Their bio-conversion processes utilize antiquated fermentations based on conventional yeast strains or transesterification by alkali catalysts. Furthermore, the cultivation of corn, sugarcane and palm typically releases significant volumes of nitrous oxide - a more powerful greenhouse gas than CO2 - into the atmosphere due to the breakdown of large quantities of nitrogen-based fertilizers used in their cultivation(3). Other disquieting issues make first generation biofuels such as the U.S. ethanol and Columbian biodiesel problematic.

As subsidies as high as 90% drive the growth of the U.S. corn-based ethanol industry(1), flex-fuel vehicles are becoming more common and North American car makers attempt to push a greener agenda on consumers. But is this sort of fuel really "green"? Some critics contend that the production of the U.S. corn-based ethanol consumes more energy from fossil fuels than it yields when one considers the whole production and the supply chain (fertilizer/herbicide usage, machine use, processing and transportation)(1). Yet other studies estimate that a reduction of between 13-29% in greenhouse gas emissions may be possible when corn-based ethanol, as opposed to fossil fuel, is burned(4). As well, there are concerns about the impact of corn-based ethanol on the availability and price of corn for food - incidentally, a daily staple for many poor citizens of the world (including Mexico) - the so-called "fuel vs food debate". (It may be noted in this context that sugar cane-derived ethanol produced in Brazil produces a net energy gain, may be cheaper to produce than corn based ethanol, as the latter first requires conversion of the corn starch to sugar before fermentation to alcohol. The current U.S trade barriers, however, restrict its importation to the U.S.)

Europe's appetite for South American Palm Oil - does it really promote "economic prosperity and safety" for South Americans?

In the meantime, Europe, and particularly the U.K., are heavily importing palm oil from South American growing regions, particularly Colombia. The E.U., World Bank and Inter-American Development Bank, including USAID, are generously funding cultivation of this crop. This heavy investment is intended to divert the workforce from the cultivation of illicit crops such a coca and poppies while simultaneously producing abundant carbon neutral green fuels for the developed world. But can this strategy succeed in a country steeped in corruption? Alarmingly, it appears that palm oil plantations displace the rural workforce instead of employing it; the workforce that remains is hardly given a fair working wage and is frequently paid in surrogate currency (i.e. company credits) usable only to buy goods from their employers at inflated prices. And if you consider the environmental degradation which inevitably stems from cultivation of a monoculture and a concurrent loss of biodiversity, increased top soil run-off, stream-flow disturbances, destruction of vast tracts of virgin forest and savannah, human rights abuses, illegal land occupation by some palm oil companies, probable terrorist activities, money laundering and the highest assassination rate in the world for trade unionists (90% of those killed worldwide were Colombian workers)(1), the vision of Columbia as part of the "green fuel" centre of the world disintegrates.

Second and third generation biofuels

The good news is that the second generation biofuels are produced through a more efficient bio-conversion step using lignocellulosic biomass, not simple sugars and oils. Feedstocks here may include agricultural and food processing wastes, trees, and various grasses that are converted to ultra-clean (minimal Sox and Nox pollutants) biofuel in elaborate biochemical or thermochemical steps. And depending on the choice of a microorganism the bio-conversion can yield cellulosic ethanol, bio-gas or bio-hydrogen. At the same time, genetic engineering promises to come up with more efficient microbial strains to yield better efficiencies. Currently, these second generation biofuels are projected to reduce carbon emissions by 90%, and by 2040 these could potentially replace up to 40% of all conventional fuels(3). This will only happen, however, provided a dramatic increase in R&D investment from the private and government sectors followed by a mandated legislation on their use.

The third generation biofuels are derived through genetically engineered (i.e. transgenic) energy crops, such as low lignin eucalyptus, poplar trees and high sugar content sorghum that thrives in acidic soil conditions. The added benefit here is that these so-called specialty energy crops yield comparatively more biomass, and their bio-conversion to biofuels is much improved due to high sugar and low lignin contents(3).

Importantly in light of the discussion above, the second and third generation fuels may be produced from biomass including waste rather than primary crops and can grow in areas inhospitable to food crops; as such, they do not place pressure on world food supplies. The second and third generation biofuels are also typically carbon neutral: they do not emit more CO2 during burning than what was originally absorbed by the biomass.

Fourth generation biofuels- the new frontier of going carbon negative

The fourth generation biofuels are based on engineering or breeding of energy crops that specifically absorb unusually high leves of CO2 (e.g. eucalyptus trees). Combined with carbon capture and sequestration, either pre- or post-combustion, this type of biofuel may result in a two-fold reduction in carbon emissions, or a bona fide carbon negative process, roughly defined as more carbon removed from the atmosphere than released.

The fourth generation biofuels may be also produced through fast pyrolysis - a technique that utilizes the burning or smouldering of biomass at 400-600 ?C in the absence of air. Its by-product, called biochar, used to be short-sightedly treated as waste, but it turns out that biochar may act as an efficient substrate for microbial populations which fix nitrogen, phosphorus, a variety of other nutrients as well as carbon and water in the soil. Remarkably, biochar, a.k.a. Terra Preta, has been used for more than 7,000 years by Amazonian civilizations as a means of doubling their agricultural crop production. Terra Preta is in fact a very effective carbon sequestration and crop enhancement tool: recent studies suggest that Terra Preta-improved soil could sequester up to 150 tonnes more carbon than unimproved soil, even before utilizing its improved fertility by growing cover crops (indeed, why not the fourth generation energy crops?) on it(5). Some studies estimate that amending only 10% of the biologically active agricultural land on the planet today with Terra Preta could help us attain carbon negative status in a relatively short time(6). So, it appears that producing biofuels via fast pyrolysis coupled to biochar-induced carbon sequestration and crop enhancement may also afford a true carbon negative process.

Although the second, third and fourth generation biofuels are not in widespread production today, with mandated legislation and continued investment in R&D, they very well may be in the next few years. But, as pointed out in the previous articles in this series, biofuels alone will not - can not - rescue us from our current state of planetary and atmospheric imbalance. We need globally agreed upon fuel efficiency regulations, widespread adoption of nanotechnology and other renewable energy systems, including sustainable agriculture, transportation, housing, waste management, energy generation and consumer education to be in a position, hopefully no more than in a few decades from now, to remove the excess of carbon that we pumped into the atmosphere during our fossil-fueled years. We need a concerted collaboration between the developed and the developing countries, so that each is held accountable, now and in the future, for their role in preserving the planet for the future generations. According to the official website for the United Nations Climate Change Conference in Bali (Dec 3-14, 2007), "What is needed is a breakthrough in the form of a roadmap for a future international agreement on enhanced global action to fight climate change in the period after 2012, the year the first commitment period of the Kyoto Protocol expires." With the world's citizens watching and demanding real action, will policy makers deliver or will one-dimensional narrow-minded economic motivations once again side-track us, as Hearst and Du Pont once did?

Discuss This Article

Discuss this article on our official blog

Sustainablity the Series

  • Nanotech-cleantech: bridging the gap to real sustainability Aug 15, 2007
    What is nanotech, how can it help us bridge the gap to sustainablity and what are its risks? This article takes a closer look at these issues.
  • Global Trends in Energy Technology Innovation: An Introduction June 18, 2007
    In a mere 100 years we have consumed the equivalent of millions of years' of years' worth of solar energy captured by ancient microorganisms and plants, and locked up in vast oil, gas and coal reserves which are being rapidly depleted. Inevitably, we must solve our energy problems in ways that are both profitable and environmentally aware.

Related Articles

  • Compact Fluorescent Lights (CFLs): Are They Worth the Switch?
    Do compact Fluorescent lights really save money, how well do they perform? See what we found out, then use our Javascript calculator to calculate your potential savings.
  • Hydrogen Fuel Cells: Energy of the Future
    Energy sources of the future will have to be cleaner and more efficient than current sources - hydrogen fuel cells fulfill these requirements; however, several challenges remain before we will see wide-spread commercialization.
  • CO2 Pollution and Global Warming
    Why is carbon dioxide, a life sustaining, compound considered pollution and how do scientists know that humans are responsible for the increasing levels of CO2 in the atmosphere and global warming?

Related Editors' Blog Entries

  • Coal-to-liquids vs. energy efficiency and renewable energies Jun 14, 2007
    For just a moment, let us compare and contrast CTL against other measures to reduce our dependence upon foreign oil and fossil fuel energies.
  • Subsidies for coal to liquids compared to funding for other energy research Jun 4, 2007
    Bills in Congress to provide tens of billions of dollars in subsidies tax credits and loan guarantees for coal to liquids production got me wondering just how much money the United States spends each year on energy research and development.
  • Congress proposes massive subsidies to convert coal into diesel fuel May 31, 2007
    Key congressional lawmakers with the support of intense lobbying by the coal industry are pushing legislation through both the House of Representatives and the Senate that could potentially provide tens of billions of dollars in subsidies, low interest loans and tax breaks to the coal industry to produce diesel fuel, jet fuel and fuel oil from coal.
  • Earth Day resolutions you should make Apr 22, 2007
    Being green for a day might be just fine on Saint Patrick's Day for those of us who are not Irish, but being environmentally "green" only on Earth Day is shallow and shortsighted. If for no other reason than one's own economic self-interest, one should at least be "light green" every day of the year. There are many things one can do that are better for the environment, save money and don't negatively impact on one's quality of life.


  1. Nichols & Campos. Ecologist, September 2007. "Are you driving on blood-fuel?"
  4. Kammen, D. The rise of renewable energy. Scientific American, Sept. 2006
  5. Marris, E. Nature, 44, 2006. Black is the new green.

Citing this page

If you need to cite this page, you can copy this text: