Traditional Medical Waste Treatments

Part Two

By Lupe Perez

Page:

Types of Treatment

Incineration is the burning of waste in temperatures ranging from 1,800°F to 2,000°F (982°C to 1093°C). The waste is fed into the first chamber where the waste is exposed to very high temperature causing and maintaining combustion. The second chamber continues to burn the waste and convert it to carbon dioxide and water. A boiler is used to convert water into steam. This steam has the potential to create energy similar to the process used in Municipal Waste Incinerators. The steam can be used to produce electricity to run a hospital, homes, or businesses.

Autoclaving or steam sterilization is a process where waste is exposed to steam for a sufficient temperature/pressure/time period to assure the destruction of microorganisms. Waste is placed into a chamber and steam is introduced. Steam temperatures are usually maintained at 250°F (121°C) or slightly higher and the process runs for 15 to 30 minutes (28 OTA). Autoclaving is used by medical waste generators to disinfect waste and remove the potential hazard to waste handlers. This is a primary treatment and is usually followed by secondary treatment including landfilling, shredding and incineration.

It is lawful to discharge liquid waste into the sanitary sewer system and it is no surprise that the local sewer authorities be concerned with the components of such waste. It is important to know the type of liquid waste being flushed down the tubes to adequately provide secondary treatment.

Much of the waste treated by autoclaving and shredding ends up at the sanitary landfill. Incinerator ash also finds its way to the landfill. Landfill disposal is the preferred option for most treated waste and treatment residues (126 Reinhardt).

Treatment/Storage/Transportation

It is important to note that the treatment of medical waste varies based on the type of waste. Medical waste is also very likely to undergo more than one process. Hospitals and doctors, for example, generate, treat and store waste. Specific containers and drums are used to store waste, which will later be transported to off-site treatment locations. Red bags are steam sterilized using specific tags, which change color. The tags are used to identify sterilized red bags from infectious red bag. This provides some reassurance for the sanitation workers.

Most hospitals have the equipment to disinfect their waste while smaller institutions may not. Once the waste is disinfected, the waste is stored and prepared for transportation. Licensed haulers are contracted to provide the service of picking up medical waste. The transportation of medical waste requires the use of a manifest system as transporters are required to track the movement of medical waste.

Advantages/Disadvantage

The process of incineration provides the advantage of volume reduction as well as the ability to dispose of recognizable waste and sharps. On site incinerators provide a quick and easy way of disposing medical waste. The ash that results from combustion can be sent to a sanitary landfill. The disadvantage lies in the incinerator emissions. These emissions may contain gases that are toxic. The implementation of air pollution controls can decrease the volume of particulates released.

Autoclaving or steam sterilization represents the ability for generators to treat their waste in a cost-effective way. The equipment saves space and is easy to maintain. Red bags are easily disinfected in autoclaves. The destruction of pathogens is highly effective. The problems come after autoclaving is complete and transportation is required. Many landfills and incinerators give generators a difficult time when accepting their red bags fearing the red bags contain infectious waste. It becomes necessary for the individual generators to develop a personal relationship with their landfill/incinerator operators to soothe their minds and gain their confidence.

Both autoclaving and incineration require exact and precise operation and maintenance. The operators of these machines must be trained continuously. The equipment must be kept up and repairs must be made as required.

Regulatory Agencies

Environmental Protection Agency has the authority to regulate medical waste management under the Resource Conservation and Recovery Act. Occupational Safety and Health Administration (OSHA) is the primary authority for regulating work place standards and employee health and safety. OSHA prepared the blood-borne pathogens rules and regulations. This document provides guidance and protects employees from occupational exposure to infectious materials and wastes. Centers for Disease Control (CDC) has provided experience and recommendations with the identification of infectious waste. CDC issues notice and advisories jointly with OSHA. Other government agencies such as health & safety, toxic substance control agency, and sanitation department are responsible for requiring medical waste generators to comply with the necessary procedures and documentation required by law.

Medical waste is not something we think about everyday. It might come to mind while on a visit to the doctor's office or after giving birth. Where does that syringe or that afterbirth end up anyway? No one wants to turn on the T.V. and see medical waste washing up on our beaches anymore. So, Congress along with the EPA made medical wash-ups less likely. The laws and regulations require that the medical industry continue to strive for the best treatments and disposal methods. Technology continues to build and improve on itself, helping to keep our beaches clean.

Page:

Citing this page

If you need to cite this page, you can copy this text: